Independent premotor encoding of the sequence and structure of birdsong in avian cortex.
نویسندگان
چکیده
How the brain coordinates rapid sequences of learned behavior, such as human speech, remains a fundamental problem in neuroscience. Birdsong is a model of such behavior, which is learned and controlled by a neural circuit that spans avian cortex, basal ganglia, and thalamus. The songs of adult male zebra finches (Taeniopygia guttata), produced as rapid sequences of vocal gestures (syllables), are encoded by the cortical premotor region HVC (proper name). While the motor encoding of song within HVC has traditionally been viewed as unitary and distributed, we used an ablation technique to ask whether the sequence and structure of song are processed independently within HVC. Results revealed a functional topography across the medial-lateral axis of HVC. Bilateral ablation of medial HVC induced a positive disruption of song (increase in atypical syllable sequences), whereas bilateral ablation of lateral HVC induced a negative disruption (omission of individual syllables). Bilateral ablation of central HVC either had no effect on song or induced syllable omission, similar to lateral HVC ablation. We then investigated HVC connectivity and found parallel afferent and efferent pathways that transit medial and lateral HVC and converge at vocal motor cortex. In light of recent evidence that syntactic and lexical components of human speech are processed independently by neighboring regions of cortex (Menenti et al., 2012), our demonstration of anatomically distinct pathways that differentially process the sequence and structure of birdsong in parallel suggests that the vertebrate brain relies on a common approach to encode rapid sequences of vocal gestures.
منابع مشابه
Extra intestinal pathogenic Escherichia coli from human and avian origin: Detection of the most common virulence-encoding genes
Pathogenic Escherichia coli strains cause a wide range of extra intestinal infections including urinary tract infection in humans and colibacillosis in poultry. They are classified into uropathogenic E. coli (UPEC) and avian pathogenic E. coli (APEC) with genetic similarities and variations. Their pathogenicity is related to the virulence-encoding genes like sfa</...
متن کاملTemporal sparseness of the premotor drive is important for rapid learning in a neural network model of birdsong.
Sparse neural codes have been widely observed in cortical sensory and motor areas. A striking example of sparse temporal coding is in the song-related premotor area high vocal center (HVC) of songbirds: The motor neurons innervating avian vocal muscles are driven by premotor nucleus robustus archistriatalis (RA), which is in turn driven by nucleus HVC. Recent experiments reveal that RA-projecti...
متن کاملLinked control of syllable sequence and phonology in birdsong.
The control of sequenced behaviors, including human speech, requires that the brain coordinate the production of discrete motor elements with their concatenation into complex patterns. In birdsong, another sequential vocal behavior, the acoustic structure (phonology) of individual song elements, or "syllables," must be coordinated with the sequencing of syllables into a song. However, it is unk...
متن کاملTemperature Manipulation in Songbird Brain Implicates the Premotor Nucleus HVC in Birdsong Syntax.
Variable motor sequences of animals are often structured and can be described by probabilistic transition rules between action elements. Examples include the songs of many songbird species such as the Bengalese finch, which consist of stereotypical syllables sequenced according to probabilistic rules (song syntax). The neural mechanisms behind such rules are poorly understood. Here, we investig...
متن کاملThe Basal Ganglia Is Necessary for Learning Spectral, but Not Temporal, Features of Birdsong
Executing a motor skill requires the brain to control which muscles to activate at what times. How these aspects of control-motor implementation and timing-are acquired, and whether the learning processes underlying them differ, is not well understood. To address this, we used a reinforcement learning paradigm to independently manipulate both spectral and temporal features of birdsong, a comple...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 34 50 شماره
صفحات -
تاریخ انتشار 2014